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Abstract 
An analysis is made for transient, fully-developed MHD free and forced convection flow of a viscous, 

incompressible, Newtonian fluid in a rotating horizontal parallel-plate channel subjected to a uniform strength, 
static, oblique magnetic field acting at an angle �  to the positive direction of the axis of rotation. A constant 
pressure gradient is imposed along the longitudinal axis of the channel. Magnetic Reynolds number is sufficiently 
small to negate the effects of magnetic induction. The channel plates are electrically non-conducting. The 
conservation equations are formulated in an (x,y,z) coordinate system and normalized using appropriate 
transformations. Expressions are also derived for the   primary and secondary shear stresses at the channel plates.  
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Introduction  
 Magnetohydrodynamic (MHD) flows with 
and without heat transfer, arise in numerous areas of 
engineering and applied physics.  A prominent area 
of focus is MHD energy generator flows which 
include disk systems, solar pond hydromagnetic 
generators and magneto-thermo-acoustic generators. 
Other applications arise in hypersonic ionized 
boundary layers, particle deposition in electrically-
conducting systems and liquid metal processing. 
     In numerous hydromagnetic flows, rotation may 
also take place and the centrifugal forces can exert a 
significant effect on flow dynamics and heat transfer 
processes. Elco et al. [1] studied analytically the 
characteristics of rotating flow in the radial vortex 
magneto-gas dynamic generator system. Further 
interesting studies of transient rotating 
hydromagnetic flow were reported by Katsurai [2] 
and Oliver [3].              

A number of mathematical and numerical 
studies of transient and rotating hydromagnetic flows 
have also appeared, employing a wide spectrum of 
analytical and computational methods. For example, 
oscillatory hydromagnetic flow in a continuous 
electrode Faraday generator was studied by Ibáñez et 
al. [4], who also considered optimization aspects and 
derived generator efficiencies.  Takhar et al. [5] 
studied unsteady hydromagnetic flow of a dusty 
viscous liquid in a rotating channel with Hall currents 
and heat transfer, obtaining exact solutions and 
studying in detail the effect of Hartmann number and 
Strouhal number on the velocity evolution in the  

 
channel. Seth et al. [6] used the Laplace transform 
technique to investigate transient rotating 
hydromagnetic Couette flow in a parallel porous plate 
channel, with flow induced due to the impulsive 
movement of the one of the plates of the channel. The 
plates of the channel are considered porous and the 
magnetic field. Asymptotic behaviour of the solution 
was analyzed for small as well as large values of time 
and it was found that  suction decelerates the primary 
as well as secondary flow where as injection and time 
have accelerating influence on the primary and 
secondary flows. Hayat et al. [7] investigated Hall 
current magneto-hydrodynamics in rotating 
oscillating flows of a non-Newtonian fluid in a 
porous medium. Zueco and Bég [8] used network 
simulation to study the transient magneto-elasto-
hydrodynamic squeezing film flow between parallel 
rotating disks with magnetic induction effects. Ghosh 
and Bhattacharjee [9] reported exact solutions for 
combined forced and free thermal convection 
hydromagnetic flow in rotating parallel plate channel 
with perfectly conducting walls, showing that shear 
stresses at the walls decrease with the increase in 
both the inverse Ekman number and Hartmann 
number squared and that the heat transfer rates at 
both walls decrease with the increase in the Grashof 
(free convection) number. Rawat et al. [10] used a 
variational finite element scheme to numerically 
simulate the laminar, fully developed, transient MHD 
free convection heat and mass transfer of a 
conducting micropolar fluid between two vertical 
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plates containing a non-Darcy porous medium. 
Strong deceleration of the flow with increasing 
magnetic field strength was established and also an 
accentuation of temperatures and concentration 
values of the dispersing agent indentified in the 
regime for strong magnetic fields. Bhargava et al. 
[11] investigated the periodic reactive hydromagnetic 
free convection velocity, thermal and species 
diffusion boundary layers along a plate embedded in 
a porous medium with Soret and Dufour effects using 
an optimized variational finite element code. They 
showed that velocity is reduced with increasing 
magnetic parameter, whereas a rise increase in Eckert 
number (dissipation parameter) elevates temperature. 
Furthermore it was found that increasing chemical 
reaction parameter enhanced velocity, temperature 
and also concentration value, and that temperature 
was increased considerably with decreasing Soret 
number and simultaneous increasing Dufour number. 
Hayat et al. [12] studied transient rotating MHD flow 
of a viscoelastic fluid analytically showing that a 
steady asymptotic hydromagnetic solution exists for 
blowing and resonance. The above studies have all 
considered the case of a transverse magnetic field i.e. 
a magnetic field acting perpendicular to the principal 
flow direction.  
                     The objective of the present study is to 
consider the influence of an oblique magnetic field 
on the rotating transient viscous hydromagnetic flow 
and free and forced convection under a forced 
oscillation. 
 
 Mathematical Model 

Consider the transient, magneto-
hydrodynamic free and forced convection flow of a 
viscous, incompressible electrically-conducting 
Newtonian fluid between parallel plates, located a 
distance 2L apart, along the z – axis, under the action 
of a constant pressure gradient, in an (x, y, z) 
coordinate system. We choose a Cartesian system 
such that the z– axis is perpendicular to the plates z = 
± L . The x – axis is in the direction of the pressure 
gradient. The channel rotates with uniform angular 
velocity, Ω, about  the z-axis   (rotation axis) 
transverse  to the plane of the flow (x–y plane), under 
a static (non-oscillating), uniform magnetic field, B0. 
The inclined magnetic field, B0, is orientated at angle 
θ  to the positive z-axis, in the x-z plane. Therefore 
the angle will sweep in a clockwise fashion, a circle 
only in the x-z plane: θ will increase from 0 (when B0 
is directed along the positive vertical z-axis direction) 
to 90 degrees i.e.. π/2, (when B0 is directed along the 
positive x-axis direction), to π (when B0 is directed 
along the negative z-axis direction), to 3π/2 (when B0 
is directed along the negative x-axis direction) and 

return to 0 degrees orientation (when B0 is again 
directed along the positive vertical z-axis direction). 
The regime is illustrated in Fig. 1 below. Both the 
fluid and the channel rotate in unison as a rigid body 
with the same constant angular velocity of rotation.  
Since the flow is influenced by a forced oscillation a 
time-varying current flow of sinusoidal nature 
becomes relevant to the case of a displacement 
current with reference to the inclined magnetic field. 
The channel plates are both electrically non-
conducting. Magnetic Reynolds number is 
insufficient to invoke magnetic induction effects, and 
furthermore ion slip, Hall current and Alfven waves 
are neglected in the analysis. The plates are infinite 
along the x and y directions, and therefore all 
physical quantities with the exception of pressure will 
be functions of the independent spatial and temporal 
variables, z and t (time) only  

 

 
Figure 1: Physical model and coordinate system for 

MHD rotating channel flow. 
 

Following Hughes and Young [13], the 
following vectorial field  are taken 
 
             ( ', ', 0)u v=q ; 

)cos,',sin'( 00 θθ BBBB yx += B    

),,( zyx EEE=E ;   

),,( zyx JJJ=J                                                                          

(1) 
where q, B, E, J are respectively, the velocity vector , 
the applied magnetic field vector , the electric field 
vector and the current density vector . u’ is the x– 
component of veloity, v’ is the y– component of 
velocity, B’x is the x – component of applied 
magnetic field, B’y is the y – component of applied 
magnetic field, B0 is the magnetic flux density and θ 
is the angle of inclination of the applied magnetic 
field with the positive direction of the axis of rotation 
(z– axis). Ex , Ey and Ez are respectively, the 
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components of electric field in the x, y and z 
directions. Jx, Jy and Jz are respectively, the x, y, z 
components of current densities. 
The equations of motion (Navier-Stokes MHD 
momentum equations) under the Boussinesq 
approximation, for the transient 
magnetohydrodynamic rotating channel flow under 
oblique magnetic field is of the form 
   

BJqqkqq
q ×+∇+∇−=×Ω+∇⋅+

∂
∂

ρρ
11

2)( 2vp
t

0[1 '( )]g T Tβ+ − − k                           (2)  

The equation of continuity (mass conservation) is: 
 q⋅∇  = 0                                                                                       

(3) 
Maxwell’s electromagnetic field equations, following 
Hughes and Young [13], neglecting the Maxwellian 
displacement currents, may be stated:  
 
∇ × B = µe J (Ampére’s law)  (4a)  

∇ × E = 
t∂

∂− B
 (Faraday’s law)  (4b) 

B⋅∇ = 0. (solenoidal relation)   (4c) 

∇ •  E = 
0ε

ρ
  (Gauss’  law)  (4d) 

Equations (4a-4d) effectively describe how 
electric charges produce electromagnetic fields. 
Ohm’s law for a moving conductor, neglecting Hall 
current takes the form:  
 J  = σ[E+  q × B]  (5)  

Equation (5) effectively shows how the 
fields affect the charges. The following notation 
applies: Ω is angular velocity , ε0 is permittivity of 
free space which is also known as the electric 
constant, t is time , g is gravity , ρ is the fluid density 
, ν is kinematic viscosity , µe is the magnetic 
permeability, p is pressure, σ is the fluid electrical 
conductivity, β is the coefficient of volume 
expansion, T is fluid temperature , T0 is the 
temperature in the reference state ,  B0 is the applied 
magnetic flux density (the magnetic induction, also 
called the magnetic field density or magnetic flux 
density  and k is the unit vector directed along the z-
axis (rotation axis). Since there is no electrical field 
applied in the current regime under consideration 
(figure 1), the polarization voltage is neglected. 
Therefore it follows that E = 0, as indicated by Meyer 
[14].  

Under these simplifications, the governing 
conservations equations, in component form, may be 
stated as follows:  
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z-momentum  
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(8) 
 
The appropriate boundary conditions (no-slip) at the 
plates are prescribed as:  
 
u ’= v ’ = 0    at      z = ± L                                                                                        
(9) 
 
where u’, v’ are velocity components in the x and y 
directions, respectively, θ is magnetic field 
orientation (degrees) and all other parameters have 
been hitherto defined. The final terms in Eqns. (6) 
and (8) designate the components of the Lorentzian 
hydromagnetic retarding force. Assuming uniform 
axial temperature variation along the plates of the 
channel, the temperature of the fluid may be written, 
following Mazumder [15] and Mazumder  et al. [16] 
as:  
 

)()( 0 zNxTT φ+=−                                                                                      

(10) 
 
where N is constant (uniform wall temperature 
gradient parameter) and the other terms have been 
defined earlier.  The equation of state is: 
 

)]('1[ 00 TT −−= βρρ                                                                                      

(11) 
 
Such a model while less complex than the 
conventional nonlinear convective heat transfer 
equation model, does nevertheless simulate one of 
the objectives of the present study (  the net effect of 
buoyancy on momentum development in the 
channel). Using (11) and  integrating Eqn. (8) 
effectively leads to:   
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Combining equations (10) and (12) we have:  
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where F(x) is an arbitrary function.  Finally using 
Eqn. (13), then Eqn (6) yields:  
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(14)  
 
Equations (14), (7) and (8) under boundary 
conditions (9) constitute a two-point boundary value 
problem. This model can be solved in primitive 
variable form either numerically or with analytical 
tools. However to yield a more generalized 
understanding of the flow phenomena, it is pertinent 
and beneficial to introduce normalized variables.  
 
Introduce the following non-dimensional variables:  

L

z=η  , u
p

L
u

x

′







=

ν
, 'v

p

L
v

x








=

ν
 

'

2

v

TL
t = ,

dx

dFL
Px 2

3

ρν
−= ,

xp

NLg
Gr

2

4

ν
β=

 
2/1

22
0

2







=
ρν
σ

LBM ,
ν

2
2 L

K
Ω=                                                                                    

(15) 
where η is dimensionless z-coordinate, u and v are 
non-dimensional primary and secondary velocities, T 
is dimensionless time, Px is non-dimensional pressure 
gradient in the x’-direction, Gr is Grashof number, 
M2 is the Hartmann hydromagnetic number, and K2 is 
the rotation parameter i.e. reciprocal of the Ekman 
number. Introducing the transformations (15) into 
Eqns. (14), (7) and (8) and boundary conditions (9), 
results in the following dimensionless equations and 

boundary conditions, with the elimination of the z-
momentum equation:  
 
Primary Momentum Equation 

,21cos 222
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(16)  
 Secondary Momentum Equation 
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(17)  
 
Transformed Boundary Conditions 
u = v  = 0   at      η = ± 1                                                                                      
(18) 
 
Analytical Solutions 

Since the hydromagnetic flow is influenced 
by a forced oscillation, the following expressions are 
implemented for the velocity fields:  
 

TuTu ωηη cos)(),( 0=                                                                                              

TvTv ωηη cos)(),( 0=                                                                                              

(19) 
 
Utilizing expressions (19) the velocity distributions 
obtained for the primary (main) and secondary 
(cross) flows are, based on the method of complex 
variables. 
                    This technique is one of the most 
powerful methods available in applied mathematics 
and fluid mechanics. It is concerned with complex 
functions which are differentiable in a given domain. 
In MHD we employ analytical functions with 
complex variables. A function f(z) is defined as 
analytic ( Bég et al. [17] ,[18] ) in a domain D if f(z) 
is defined and differentiable at all points of D. the 
function f(z) is analytic at a point z = z0 in D, 
provided f(z) is analytic in a neighborhood. The 
necessary condition therefore for implementation of 
complex variables in e.g. magneto-hydrodynamic 
flows, is that the function f(z) must be differentiable 
not only at a point z0, but throughout a specified 
neighborhood of that point. Such functions are also 
known as holomorphic in the domain D. Using this 
approach, the complex solutions can be shown to take 
the form: 
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Special Cases  
From the general solutions obtained in section 3, we may derive briefly some special cases, for physically pertinent 
regimes.  
 
Case I: Oscillating Forced convection with an Oblique Magnetic Field 
In the absence of buoyancy forces (Gr → 0) the solutions (20) and (21) reduce to the case for pure forced 
magnetohydrodynamic convection. 
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The expressions (22) will remain unchanged. This regime is of considerable interest in MHD generators, as 
elaborated in Vogin and Alemany [19]. 
 
Case II: Oscillating mixed Convection with a Transverse Magnetic Field  
 
With θ → 0, the applied magnetic field, B0 will become orientated along the z-axis i.e. at  exactly 90 degrees (π/2 
radians) to the x-y plane of flow. Clearly sin 0 → 0 and cos 0 → 1. Effectively Lorentzian hydromagnetic drag will 
be retained in both the primary flow velocity, and secondary flow velocity, via the P, α and β expressions which 
will still retain M2 terms. Magnetic field, M2 however will disappear from the expression, GMK. The corresponding 
solutions for the primary and secondary flow fields, respectively, will then reduce from expressions (20) and (21) to: 
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In this case, the expressions (22) will be affected and reduce to: 
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In the expression (22) R1 is affected, since α, β are affected. This case provides an excellent benchmark for the vast 
majority of studies in oscillatory hydromagnetics, which consider only a transverse magnetic field acting on the 
flow.  
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Case III: Oscillatory “Magnetic Mirror” buoyant Convection with Oblique Magnetic Field  
          With the angular frequency of oscillation, ωT→ π/2, a resonant response arises corresponding to the 

condition, 4 4 4 1/ 21
cos (16 )

2
T K M Sinω > ω − θ . The condition, 4 4 4 1/ 21

cos (16 )
2

T K M Sinω > ω − θ  defines an 

oscillatory turbulent dynamo mechanism in a solar hydromagnetic regime if the strength of a magnetic field will be 
an appropriate level. A charged oscillation can take place with reference to a driving force to exhibit resonant 
fluorescence in the presence of an ( driving frequency ) excitation frequency, ω >0.   
Case IV: Steady State Resonant  Free Convection with an Oblique Magnetic Field  
With the angular frequency of oscillation, ωT→ 0, oscillation is eliminated in the regime. The regime is then “steady 
state”. The velocity distributions in (20) and (21), can be expounded in two ways. The excitation frequency may be 

either 4 4 4 1/ 21
(16 )

2
K M Sinω < − θ  or 4 4 4 1/ 21

(16 )
2

K M Sinω > − θ . The former condition corresponds to a low 

frequency of oscillation in response to a solar dynamo mechanism, wherein the Lorentzian (magnetohydrodynamic) 
and Coriolis (rotational) forces are of the same order of magnitude. The latter conditions implies a resonant response 
of turbulent characteristics, and the flow regime is destabilized by a magnetic field. This latter condition therefore 
leads to a steady state resonance on the velocity field.  
  
Shear Stress Distributions 

The primary and secondary shear stresses at the upper and lower plates can be derived by taking the first 
gradients of the respective velocities at the lower (η = -1) and upper (η = +1) plates. 
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                                                                                                                                    (27)                                                         
Inspection of Eqns. (26) and (27) reveal that the primary (main flow) and secondary (cross flow) shear stress 
components vanish neither on the upper plate or the lower plate. Both shear stresses are functions of magnetic field 
(M2), rotational parameter (K2), angular frequency (ωT) and of course magnetic field orientation (θ). Closer 
inspection of the shear stress expressions indicates that in the forced convection case (Gr → 0), flow reversal i.e. 
backflow, will not arise. Further analysis however indicates that the primary shear stress at the lower plate, i.e. 

1−=ηηd

du
 will vanish at a critical value of the Grashof number. This criterion is defined as: 
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                                                                                 (28)  
where the functions F1, F2, F3, F4 and F5 are defined respectively as:  
 

222424
1 2tancos28sin ωωθωθ ++−= TMKMF                                                          (29a) 

)2sin2sinh(12 βααβ −= FF                            (29b) 

 

)2sin2sinh2cos2(cosh2
3 ββααβα −−−= MF                (29c) 

 

)2sin2sinh(14 βααβ += FF                                                                                   (29d) 

 

)2sin2sinh(2
5 ββαα −= MF                             (29e) 

 
Since cosh2α > cos2β  for all K2, ωT  and θ, the numerator in (28) will always be positive.  

The secondary (cross flow) shear stress at the lower plate, i.e. 
1−=ηηd

dv
 will also vanish at a critical value of the 

Grashof number. This criterion is defined as: 
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where the functions H1, H2, H3, H4, H5  and H6 are defined respectively as:  
 

2224
1 tancos4 ωωθω −−= TMKH                            (31a) 

θθ 22
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4442
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)2sin2sinh(23 βααβ −= HH                            (31c) 

)2sin2sinh2cos2(cosh14 ββααβα −−−= HH                           (31d) 

 

)2sinh2sin(25 αββα += HH                                                                                    (31e) 

 

)2sin2sinh(16 ββαα −= HH                                                                                    (31f) 

 
Proceeding as with the lower plate, we find that at the upper plate, primary (main) flow reversal is initiated when:  
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Similarly secondary (cross) flow reversal arises at the upper plate when:  
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                                       (33) 

The critical Grashof numbers given by expressions (32) and (33) will therefore be numerically  equal to those 
yielded by expressions (28) and (30), for the primary flow, since the expressions emerge as being the same.  
 
Results and Discussion 
            Computations are carried out for the fourth 
order ordinary coupled partial differential equations 
defined by equations (16), (17) subject to a forced 
oscillation given by the equations (19) based on the  

 
 
boundary conditions (18). This yields the exact 
solutions given in eqns. (20) and (21). The evolution 
of dimensionless primary and secondary velocity 
distributions given by the equations (20) and (21) 
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with the inclusion of (22) due to primary and 
secondary flows have been depicted graphically to 
show the influence of the various controlling 
parameters viz., M2, K2 , θ, Gr and ωT. A parametric 
study has also been undertaken for the response of 
the critical Grashof numbers for the primary and 
secondary flows (Grcx, Grcy) defined in equations (32) 
and (33) respectively, to θ (magnetic field 
inclination), M2 (Hartmann number squared), K2  

(inverse Ekman number) and ωT (angular frequency 
of oscillation). These are depicted in tables 1 to 6. 
Additionally numerical evaluations of the 
dimensionless primary (u) and secondary (v) 
velocities have been conducted for both steady state 
(ωT = 0) and transient (ωT> 0) cases, for the effects 
of θ (inclination), M2 (Hartmann number squared), K2  

(inverse Ekman number) and  Gr (Grashof number). 
These are plotted in figures in figures 2 to 10. Default 
values for the control parameters in these graphs are 
taken as K2 = 4; ωT = 0 (steady state) or ωT = π/4 
(transient i.e. oscillatory flow). 
 
M2→ 2.0 5.0 8.0 10.0 
θ ↓ Grcx Grcx Grcx Grcx 
0 1.08222 1.20181 1.25510 1.26797 

π/6 1.0 
7974 

1.20510 1.27004 1.29005 

π/4 1.07708 1.20844 1.28810   
1.318607 

π/3 1.07423 1.21182   
1.310601 

1.35745 

π/2 1.07117 1.21520 1.33969 1.41411 
Table 1: Critical Grashof number for primary flow 
(Grcx)  for K2 = 5, ωωωωT = ππππ/4, ωωωω =0.4, with  M2 and θθθθ  

variation. 
 
M2→ 2.0 5.0 8.0 10.0 
θ ↓ Grcy Grcy Grcy Grcy 
0 2.15679 2.22039 2.16832 2.10984 

π/6 2.17596 2.36828 2.43820 2.43383 
π/4 2.19565 2.56707 2.92311 3.13019 
π/3 2.21585 2.84882 4.05982 5.77795 
π/2 2.23651 3.27837 9.92299 9.50025 
Table 2: Critical Grashof number for secondary  flow 

(Grcy)  for K2 = 5, ωωωωT = ππππ/4, ωωωω =0.4, with  M2 and θθθθ  
variation. 

 
K2→ 4.0 6.0 8.0 10.0 
ωT ↓ Grcx Grcx Grcx Grcx 

0 1.38988 1.25088 1.17166 1.12694 
π/6 1.39747 1.25291  1.172057 1.12696 
π/4 1.40331 1.25443 1.17234 1.12697 
π/3 1.41406 1.25715 1.17283 1.12698 

5π/12 1.44809 1.26500 1.17408 1.12693 

Table 3: Critical Grashof number for primary flow 
(Grcx)  for M2 = 10, θθθθ = ππππ/4, ωωωω =0.4, with  K2 and ωωωωT  

variation. 
 
K2→ 4.0 6.0 8.0 10.0 
ωT ↓ Grcy Grcy Grcy Grcy 

0 3.42504 2.32074 1.88616 1.67069 
π/6 4.01867 2.41911 1.91810 1.68507 
π/4 4.68019 2.50081 1.94296 1.69599 
π/3 6.94456 2.66673 1.98932 1.71574 

5π/12 7.74044 3.37511 2.14116 1.77532 
Table 4: Critical Grashof number for secondary flow 
(Grcy)  for M2 = 10, θθθθ = ππππ/4, ωωωω =0.4, with  K2 and ωωωωT  

variation. 
 
ω
T 
→ 

0 π/6 π/4 π/3 5π/12 

θ 
↓ 

Grcx Grcx Grcx Grcx Grcx 

0 1.2615
5 

1.2651
9 

1.2679
7 

1.2729
8 

1.2881
6 

π/
6 

1.2833
2 

1.2871
4 

1.2900
5 

1.2953
1 

1.3112
3 

π/
4 

1.3114
7 

1.3155
3 

1.3186
1 

1.3241
8 

1.3410
7 

π/
3 

1.3497
1 

1.3541
1 

1.3574
6 

1.3635
0 

1.3818
2 

π/
2 

1.4053
6 

1.4103
3 

1.4141
1 

1.4209
6 

1.4417
6 

Table 5: Critical Grashof number for primary flow 
(Grcx)  for M2 = 10, K2 = 5, ωωωω =0.4, with  ωωωωT  and   θθθθ   

variation. 
 
ω
T 
→ 

0 π/6 π/4 π/3 5π/12 

θ 
↓ 

Grcy Grcy Grcy Grcy Grcy 

0 1.97035 2.0456
8 

2.1098
4 

2.2446
2 

2.90057 

π/
6 

2.22388 2.3365
4 

2.4338
3 

2.6426
6 

3.74946 

π/
4 

2.72710 2.9390
4 

3.1301
9 

3.5681
3 

6.76544 

π/
3 

4.23919 4.9822
1 

5.7779
5 

8.2695
2 

18.2317
2 

π/
2 

16.6214
8 

16.293
1 

9.5002
6 

5.2916
2 

2.08156 

Table 6: Critical Grashof number for secondary flow 
(Grcy) for M2 = 10, K2 = 5, ωωωω =0.4, with  ωωωωT  and   θθθθ   

variation. 
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Fig. 2:  Velocity distributions for Gr = 2, M2 = 10, ωT = 

0, ω = 0.4, θ = π/4 for various K2 values. (steady) 
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Fig. 3 Velocity distributions for Gr = 2, M2 = 10, ωT = 
π/4, ω = 0.4, θ = π/4 for various K2 values.(transient) 
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Fig. 4 Velocity distributions for K2 = 4, M2 = 10, ωT = 0, 

ω = 0.4, θ = π/4 for various Gr values.(steady) 
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Fig. 5 Velocity distributions for K2 = 4, M2 = 10, ωT = 
π/4, ω = 0.4, θ = π/4 for various Gr values.(transient) 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

η

Ve
lo

ci
ty

u

v

ωT = 0, π/6, π/4, π/3, 5π/12

ωT = 0, π/6, π/4, π/3, 5π/12

ωT = 0, π/6, π/4, π/3, 5π/12

 
Fig. 6:  Velocity distributions for K2 = 4, Gr = 2, M2 = 10, 

ω = 0.4, θ = π/4 for various ωωωωT values 
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Fig. 7: Velocity distributions for K2 = 5, Gr = 2, M2 = 10, 

ωT = 0, ω = 0.4 for various θθθθ values. (steady) 
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Fig. 8:  Velocity distributions for K2 = 5, Gr = 2, M2 = 10, 

ωT = π/4, ω = 0.4 for various θθθθ values. (transient) 
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Fig. 9: Velocity distributions for Gr = 2, K2 = 5, ωT = 0, 

ω = 0.4, θ = π/4 for various M2 values. (steady 
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Fig. Fig.10: Velocity distributions for Gr = 2, K2 = 5, ωT 
= π/4, ω = 0.4, θ = π/4 for various M2 values. (transient) 

 
 Table 1 shows that Grcx remains positive for 

any combination of M2 and   θ. Positive Grashof 
number (Grcx > 0) in free convection flows implies 
cooling of the plate by free convection currents i.e. 
transport of thermal energy from the channel plates, 
to the intercalated fluid. We note that the opposite 
case, Grcx < 0 would correspond to plate heating, 
wherein free convection currents transport thermal 
energy from the fluid to the platesFor any inclination 
of the magnetic field, θ, Grcx  magnitudes are found to 
increase steadily with an increase in M2. 

From Table 2 it is observed that for the 
variation of the critical Grashof number for the 
secondary flow field, i.e. Grcy. In this case we 
observe that at any value of M2, Grcy is continuously 
boosted in magnitude with a rise in magnetic field 
inclination i.e. secondary critical Grashof number 
values progressively increase as the magnetic field 
sweeps from the positive z-axis (θ = 0) through to the 
positive x-axis (θ = π/2). Magnitudes are also found 
to be considerably higher than in the case of the 
primary critical Grashof number (Grcx), particularly 
at high M2 value and greater inclinations.  

In tables 3 and 4, the  evolution of the 
primary flow and secondary flow critical Grashof 
numbers, i.e. Grcx and Grcy, are shown, for 
combinations of the rotational parameter (K2) and the 
oscillation parameter (ωT). Both tables correspond to 
the oblique magnetic field case (θ = π/4).  Inspection 
of Table 3 reveals that with an increase in K2 from 4, 
through  
6,8 to10,at a given ωT, there is a clear decrease in 
Grcx. Increasing K2 corresponds to a rise in the 
rotational velocity of the channel, for fixed L and ν 

(
ν

2
2 L

K
Ω=  ). Coriolis force is therefore boosted as 

K2 is increased and this serves to reduce critical 
primary Grashof number magnitudes.  Conversely for 
a fixed K2, as the parameter ωT increases from 0 
(transverse field case) through π/6, π/4, π/3 to the 

maximum inclination of π/2, there is a steady rise in 
value of Grcx. Since ω = 0.4, an increase in ωT 
implies that time (T) is increasing. Hence with 
progression of time, the critical primary Grashof 
number is enhanced. Table 4 shows that critical 
Grashof number for the secondary flow (Grcy)  
exhibits a similar response to  K2 and ωT i.e. with 
increasing K2 values, Grcy magnitudes are depressed, 
and with increasing ωT values, magnitudes are  
increased. However the values of Grcy are much 
higher than Grcx indicating that the secondary flow 
response is much stronger.  

Tables 5 and 6 show the combined effects of  
ωT and  θ on  Grcx and Grcy. Grcx as seen in Table 5, 
again increases with an increase in ωT, for any value 
of magnetic field inclination (θ). However with 
greater θ, the magnitudes of Grcx are clearly 
enhanced.  Maximum Grcx arises therefore for the 
maximum studied value of  ωT (= 5π/12)  and the 
maximum value of θ (= π/2) , and attains a value of 
1.44176. A similar trend is observed for the Grcy 
values in Table 6. However Grcy values generally 
increase with increasing ωT for  θ = 0, π/6 and π/4; 
however  as θ is further increased to π/3 and π/2, Grcy 
values rise as ωT increases to π/3 but then fall 
considerably for ωT = π/2.  

Figures 2 to 10 show the primary (u) and 
secondary (v) velocity distributions across the 
channel for various values of the governing 
parameters (M2, K2, θ, Gr) for steady state (ωT = 0) 
and transient (ωT=π/4) cases, respectively.  

Figures 2 and 3 show the effect of the 
rotational parameter (K2) on u and v distributions. In 
the steady state case (figure 2) with increasing K2 
primary velocity is generally reduced in magnitude. u 
values are negative near the lower plate of the 
channel (η = -1); however for the majority of the 
channel space  values are positive so that back flow 
does not arise here. Peak primary velocity arises near 
to the upper plate and with increasing Coriolis force 
(i.e. greater K2), the peaks are displaced further from 
the upper plate (η = 1). Conversely the secondary 
flow is found to be positive near the lower plate but 
strongly negative everywhere else in the channel 
indicating that there is strong secondary flow 
reversal. With increasing K2 values, v values are 
increased i.e. become more positive. A similar 
response is observed in figure 3 for the transient case 
(ωT = π/4).  

Figures 4 and 5 depict the primary and 
secondary velocity response to various Grashof 
numbers. It is observed for the steady state (figure 4) 
and transient (figure 5) cases. With increasing Gr 
values, primary velocity is decelerated in the lower 
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channel half (-1 < η < 0) whereas it is strongly 
accelerated in the upper channel half (0 < η < 1). 
Conversely secondary velocity is found to be strongly 
accelerated in the lower channel half (-1 < η < 0) but 
decelerated in the upper channel half (0 < η < 1) with 
an increase in Gr.  

Figure 6 shows the influence of the 
oscillatory parameter (ωT) on the primary and 
secondary velocity profiles through the channel.  
With increasing ωT values, there is a distinct 
acceleration in the primary flow. Conversely the 
secondary flow is initially decelerated with 
increasing ωT values from the lower channel towards 
the channel mid-point, thereafter the secondary 
velocity is slightly accelerated with increasing ωT i.e. 
values become less negative. Generally the secondary 
velocities are negative i.e. strong secondary back 
flow occurs throughout the channel for all ωT.  

The effects of magnetic field inclination,θ, 
on primary (u) and secondary (v) velocity profiles in 
the channel are shown in figures 7 and 8, for the 
steady state and transient cases.  It is observed that a 
rise in inclination accelerates the primary flow (since 
hydromagnetic drag is reduced) and increase 
backflow in the secondary flow.  

               Finally in figures 9 and 10, we 
observe that for both steady state and transient cases, 
with an increase in the hydromagnetic parameter 
(M2), primary velocity magnitudes are decreased in 
magnitude in the proximity of the lower plate (where 
back flow arises) but increased in the remainder of 
the channel where as secondary flow velocity 
magnitudes are strongly decreased throughout the 
channel. 
  
Conclusions 

Analytical solutions have been obtained for 
the transient magneto-hydrodynamic free convection 
flow in a rotating parallel plate channel in the 
presence of an inclined magnetic field. Critical 
Grashod numbers have been derived for the primary 
(main) flow and the secondary (cross) flow.  

• For any inclination of the magnetic field, θ, 
Grcx  and Grcy  magnitudes are found to 
increase steadily with an increase in 
magnetic field parameter (M2).  

• Grcx and Grcy are increased with a rise in 
magnetic field inclination (θ). 

• Grcy magnitudes are found to be 
substantially greater than Grcx, magnitudes, 
in particular at high M2 value and greater 
inclination (θ). 

• With an increase in rotational parameter 
(K2), Grcx and Grcy are generally decreased. 

• With increasing oscillatory parameter values 
(ωT) Grcx and Grcy magnitudes are 
increased.  

• With increasing rotational parameter (K2) 
primary velocity (u) is decreased 
whereassecondary velocity (v) is enhanced.  

• With increasing free convection parameter 
i.e. Grashof number (Gr) primary velocity is 
decelerated in the lower channel half (-1 < η 
< 0) whereas it is strongly accelerated in 
theupper channel half (0 < η < 1); the 
converse response is computed for the 
secondary flow.  

• With increasing ωT values (and therefore 
with progression of time) there is a 
strongacceleration in the primary flow, 
whereas there secondary flow is generally 
retarded i.e.greater backflow. 

• With a rise in magnetic field inclination (θ) 
the primary flow is accelerated (since 
hydromagnetic drag is reduced) whereas the 
backflow is generally decelerated 
i.e.increasing secondary back flow. 
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