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Abstract
An analysis is made for transient, fully-developd#iD free and forced convection flow of a viscous,

incompressible, Newtonian fluid in a rotating hortal parallel-plate channel subjected to a unifatmength,
static, oblique magnetic field acting at an angle to the positive direction of the axis of rotatioh constant
pressure gradient is imposed along the longitudixéd of the channel. Magnetic Reynolds numbeufficsently
small to negate the effects of magnetic inductidhe channel plates are electrically non-conductifbe
conservation equations are formulated in an (x,\@prdinate system and normalized using appropriate
transformations. Expressions are also derivedi®r primary and secondary shear stresses at éimnehplates.

Keywords. MHD flow; free and forced convection flow; rotati; complex variables solutions; oblique magnetic

field.

I ntroduction

Magnetohydrodynamic (MHD) flows with
and without heat transfer, arise in numerous aoéas
engineering and applied physics. A prominent area
of focus is MHD energy generator flows which
include disk systems, solar pond hydromagnetic

generators and magneto-thermo-acoustic generators.

Other applications arise in hypersonic ionized
boundary layers, particle deposition in electrigall
conducting systems and liquid metal processing.

In numerous hydromagnetic flows, rotation may
also take place and the centrifugal forces cantexer
significant effect on flow dynamics and heat transf
processes. Elco et al. [1] studied analytically the
characteristics of rotating flow in the radial ert
magneto-gas dynamic generator system. Further
interesting studies of  transient rotating
hydromagnetic flow were reported by Katsurai [2]
and Oliver [3].

A number of mathematical and numerical
studies of transient and rotating hydromagnetiw$lo
have also appeared, employing a wide spectrum of
analytical and computational methods. For example,
oscillatory hydromagnetic flow in a continuous
electrode Faraday generator was studied by Ibéfiez e
al. [4], who also considered optimization aspecis a
derived generator efficiencies. Takhar et al. [5]
studied unsteady hydromagnetic flow of a dusty
viscous liquid in a rotating channel with Hall cemts
and heat transfer, obtaining exact solutions and
studying in detail the effect of Hartmann numbed an
Strouhal number on the velocity evolution in the
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channel. Seth et al. [6] used the Laplace transform
technique to investigate transient rotating
hydromagnetic Couette flow in a parallel poroudepla
channel, with flow induced due to the impulsive
movement of the one of the plates of the chanrted. T
plates of the channel are considered porous and the
magnetic field. Asymptotic behaviour of the solatio
was analyzed for small as well as large valuesud t
and it was found that suction decelerates thegmm
as well as secondary flow where as injection ame ti
have accelerating influence on the primary and
secondary flows. Hayat et al. [7] investigated Hall
current  magneto-hydrodynamics in  rotating
oscillating flows of a non-Newtonian fluid in a
porous medium. Zueco and Bég [8] used network
simulation to study the transient magneto-elasto-
hydrodynamic squeezing film flow between parallel
rotating disks with magnetic induction effects. Gho
and Bhattacharjee [9] reported exact solutions for
combined forced and free thermal convection
hydromagnetic flow in rotating parallel plate chehn
with perfectly conducting walls, showing that shear
stresses at the walls decrease with the increase in
both the inverse Ekman number and Hartmann
number squared and that the heat transfer rates at
both walls decrease with the increase in the Gifasho
(free convection) number. Rawat et al. [10] used a
variational finite element scheme to numerically
simulate the laminar, fully developed, transient BMH
free convection heat and mass transfer of a
conducting micropolar fluid between two vertical
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plates containing a non-Darcy porous medium.
Strong deceleration of the flow with increasing
magnetic field strength was established and also an
accentuation of temperatures and concentration
values of the dispersing agent indentified in the
regime for strong magnetic fields. Bhargava et al.
[11] investigated the periodic reactive hydromagnet
free convection velocity, thermal and species
diffusion boundary layers along a plate embedded in
a porous medium with Soret and Dufour effects using
an optimized variational finite element code. They
showed that velocity is reduced with increasing
magnetic parameter, whereas a rise increase inrtecke
number (dissipation parameter) elevates temperature
Furthermore it was found that increasing chemical
reaction parameter enhanced velocity, temperature
and also concentration value, and that temperature
was increased considerably with decreasing Soret
number and simultaneous increasing Dufour number.
Hayat et al. [12] studied transient rotating MHDW

of a viscoelastic fluid analytically showing that a
steady asymptotic hydromagnetic solution exists for
blowing and resonance. The above studies have all
considered the case of a transverse magneticifeeld

a magnetic field acting perpendicular to the ppati
flow direction.

The objective of the presenidy is to
consider the influence of an oblique magnetic field
on the rotating transient viscous hydromagnetiw flo
and free and forced convection under a forced
oscillation.

Mathematical M odel

Consider the transient, magneto-
hydrodynamic free and forced convection flow of a
viscous, incompressible  electrically-conducting
Newtonian fluid between parallel plates, located a
distance2L apart, along the — axis, under the action
of a constant pressure gradient, in ag Yy, 32
coordinate system. We choose a Cartesian system
such that the— axis is perpendicular to the plates
+ L. The x — axis is in the direction of the pressure
gradient. The channel rotates with uniform angular
velocity, Q, about thez-axis (rotation axis)
transverse to the plane of the floxwy plane), under
a static (non-oscillating), uniform magnetic fie®},
The inclined magnetic field,, is orientated at angle
@ to the positive z-axis, in the x-z plane. Therefo
the angle will sweep in a clockwise fashion, aleirc
onlyin the x-z plane@will increase from 0 (wheB,
is directed along the positive vertiaahxis direction)
to 90 degrees i.em'2, (whenBy is directed along the
positive x-axis direction), tort (when By is directed
along the negative-axis direction), to &2 (whenBy
is directed along the negativeaxis direction) and
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return to 0 degreesorientation (whenB, is again
directed along the positive verticakaxis direction).
The regime is illustrated in Fig. 1 below. Both the
fluid and the channel rotate in unison as a rigidyb
with the same constant angular velocity of rotation
Since the flow is influenced by a forced oscillatia
time-varying current flow of sinusoidal nature
becomes relevant to the case of a displacement
current with reference to the inclined magnetiddfie
The channel plates are both electrically non-
conducting. Magnetic Reynolds number is
insufficient to invoke magnetic induction effecésd
furthermore ion slip, Hall current and Alfven waves
are neglected in the analysis. The plates areit@afin
along the x and y directions, and therefore all
physical quantities with the exception of pressuile

be functions of the independent spatial and tempora
variables, z antl(time) only

Non-conducting upper plate

=

Oblique constant Newtonien hydromagnetic
magnelic field, Be, fuid

R A
—_—

Primary flow

/

Figure 1: Physical model and coor dinate system for
MHD rotating channel flow.

z=L

Non-conducting lower plate

Following Hughes and Young [13], the
following vectorial field are taken

qg=(u, v, 0);

B =(B',*+B,sing,B',, B, cosd)
E=(E,,.E,.E,) ;
J=(J,:9y:d,)

1)

whereq, B, E, J are respectively, the velocity vector ,
the applied magnetic field vector , the electrigldi
vector and the current density vectou'.is the x—
component of veloity,v’ is the y- component of
velocity, B’y is the x — component of applied
magnetic field,B’y is they — component of applied
magnetic field B, is the magnetic flux density amd

is the angle of inclination of the applied magnetic
field with the positive direction of the axis oftation
(z axis). Ex , B and E, are respectively, the
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components of electric field in the, y and z
directions.J,, J, and J, are respectively, thg, y, z
components of current densities.

The equations of motion (Navier-Stokes MHD
momentum equations) under the Boussinesq
approximation, for the transient
magnetohydrodynamic rotating channel flow under
obliqgue magnetic field is of the form

X () +20kxq=—— Cp#vTq+—J B
ot p p

+o -8 (T-T)k 2
The equation of continuity (mass conservation) is:
lg=0
®3)

Maxwell's electromagnetic field equations, followgin
Hughes and Young [13], neglecting the Maxwellian
displacement currents, may be stated:

OxB=feJ (Ampére’s law) (4a)

OxE=-— 60_? (Faraday's law) (4b)

L1 [B = 0. (solenoidal relation) (4c)

|:|o E:ﬁ

EO

Equations (4a-4d) effectively describe how
electric charges produce electromagnetic fields.
Ohm’s law for a moving conductor, neglecting Hall
current takes the form:

J =o[E+ qxB] (5)

Equation (5) effectively shows how the
fields affect the charges. The following notation
applies: Q is angular velocity, & is permittivity of
free space which is also known as the electric
constantt is time ,g is gravity ,p is the fluid density
, V is kinematic viscosity ,4 is the magnetic
permeability,p is pressureg is the fluid electrical
conductivity, S is the coefficient of volume
expansion, T is fluid temperature ,T, is the
temperature in the reference stat8 is the applied
magnetic flux density (the magnetic induction, also
called the magnetic field density or magnetic flux
density andk is the unit vector directed along the
axis (rotation axis). Since there is no electrivald
applied in the current regime under consideration
(figure 1), the polarization voltage is neglected.
Therefore it follows thaE = 0, as indicated by Meyer
[14].

(Gauss’ law) (4d)

Under these simplifications, the governing
conservations equations, in component form, may be
stated as follows:
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X-momentum

' 2,1 2
M _oqy=-190,,9 uz ~Bo yeog 0,
ot pox 0z P
(6)
y-momentum
. 2, 2
N 4 oqu=1? \2/ ~ By,
0z P
(7)
Z-momentum
2
0 :_£@+ g{l-B(T-T,)}+ 9B, u'sindcosb.
p 0z P
(8)

The appropriate boundary conditions (no-slip) & th
plates are prescribed as:
u'=v’'=0 at z=#L

(9)

whereu’, v’ are velocity components in theandy
directions, respectively, 8 is magnetic field
orientation (degrees) and all other parameters have
been hitherto defined. The final terms in Eqns. (6)
and (8) designate the components of the Lorentzian
hydromagnetic retarding force. Assuming uniform
axial temperature variation along the plates of the
channel, the temperature of the fluid may be writte
following Mazumder [15] and Mazumder et HI6]

as:

(T-T,)=Nx+¢(2)
(10)

where N is constant (uniform wall temperature
gradient parameter) and the other terms have been
defined earlier. The equation of state is:

P =p[1= L (T =Ty)]
(11)

Such a model while less complex than the
conventional nonlinear convective heat transfer
equation model, does nevertheless simulate one of
the objectives of the present study ( the netcefié
buoyancy on momentum development in the
channel). Using (11) and integrating Eqn. (8)
effectively leads to:
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p==p,9] [1- B'(T -T,)]dz
+ UB; zu'sin28 + F(x)

(12)

Combining equations (10) and (12) we have:

op d
—=- '‘Nz+—F(x
™ I8 o (x)
(13)
where F(x) is an arbitrary function. Finally using
Eqn. (13), then Eqn (6) yields:
ou' 1d
— =2Qv'=gf'Nz———{F(X
™ 9B P dX{ (X)}
2. 2
+|/a li _ %, u'cos 4,
0z P
(14)

Equations (14), (7) and (8) wunder boundary
conditions (9) constitute a two-point boundary ealu
problem. This model can be solved in primitive
variable form either numerically or with analytical
tools. However to vyield a more generalized
understanding of the flow phenomena, it is pertinen
and beneficial to introduce normalized variables.

Introduce the following non-dimensional variables:

z L . L .,
== u=|— U, v=|— |V
LR P CAE oy

(=T p L dF o gAY
[ X 2 ! 2
Y pv° dx Vep,
M 2 :BOZL{iJ k2=t
yolts vV
(15)

where 77 is dimensionlesg-coordinate,u andv are
non-dimensional primary and secondary velocities,
is dimensionless timé, is non-dimensional pressure
gradient in thex’-direction, Gr is Grashof number,
M? is the Hartmann hydromagnetic number, &Ads

the rotation parameter i.e. reciprocal of the Ekman
number. Introducing the transformations (15) into
Egns. (14), (7) and (8) and boundary conditions (9)
results in the following dimensionless equationd an
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boundary conditions, with the elimination of tke
momentum equation;

Primary Momentum Equation

2
9 l; —a—u—M 2ucos’ 8= -1-Grn - 2K ?v,
on® 0T
(16)
Secondary Momentum Equation
v ov
- ——-M?v=2K".
on® 0T
17)
Transformed Boundary Conditions
u=v =0 at np==#1
(18)

Analytical Solutions

Since the hydromagnetic flow is influenced
by a forced oscillation, the following expressiare
implemented for the velocity fields:

u(7.T) = Uy (77) CoseT
v(177,T) =V, (17) cosT
(19)

Utilizing expressions (19) the velocity distribui®
obtained for the primary (main) and secondary
(cross) flows are, based on the method of complex
variables

This technique is one of the simo
powerful methods available in applied mathematics
and fluid mechanics. It is concerned with complex
functions which are differentiable in a given domai
In MHD we employ analytical functions with
complex variables. A functiorf(z) is defined as
analytic ( Bég et al. [17] ,[18] ) in a domdif f(z)
is defined and differentiable at all points of Det
function f(z) is analytic at a point z =, 4n D,
provided f(z) is analytic in a neighborhood. The
necessary condition therefore for implementation of
complex variables in e.g. magneto-hydrodynamic
flows, is that the function f(z) must be differeziile
not only at a point ¢ but throughout a specified
neighborhood of that point. Such functions are also
known as holomorphic in the domaih Using this
approach, the complex solutions can be shown ® tak
the form:
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_[(m?sin*+iG )R - 2P _cosha-if)n . sin{a-iB)n
U(’7’T)_l 2iG2, 1[1 cosh{a -i) cr Sinfﬁa—iﬁ)]

_ (MZSinZH-—iG,jK)Rl—ZP 1_cost(a+i-ﬁ)/7_Gr sir.ﬂ(a+i78)/7 +RGI
2G2, cosHa +ip) sinffa +i B)
120
Y T)- 2P(M?sin?6-iG2 )(M*sin‘d+ Gy ) R L cosha-ip)n _  sina-ig)y
7= 8K G2, cosHa -ip) sinffa —i B)
B 2P(M2sin2.9+iG§K)—(|\/|4sin4H+GJK)Fg 1_cosk(a+i,6’)/7 G sin}(a+iﬁ)q P Gr
8K’G2, cosH{a +ip) sinffa +iB) g?
(21)
WhereR, = 2M22 _p= _Mz[Mzcgszﬁ—zc;)tana)T]
(a” +57) (a” +p7)
1 2 2 4 % 2 ’
a.p=7 <{(1+co§e)|v| - 20 tamd} +GMK> +{( 2 cdO)M*- @ tant)
G2 = (L6K* —M *sin® 8 - 4a)” tar? ol — 4w?)"'? (22)

Special Cases
From the general solutions obtained in section&may derive briefly some special cases, for playlsipertinent
regimes.

Case I: Oscillating Forced convection with an Oblig Magnetic Field
In the absence of buoyancy forc&sr (- 0) the solutions (20) and (21) reduce to the dasepure forced
magnetohydrodynamic convection.

[ (M?sin’6+iG} )R -2P|(  cosha -ip)
U(H'T)_[ 2iG2, ](1_ cosl‘(a—i,ﬁ’;?j

) (Mzsinze—iGhﬁK)Rl—ZP - cosh(a +iB)n
2G2, cosh{a +ip)

(23a)
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V)= 2P( M?sin® 8 -iG2, )(M *sin*@+ GN‘,‘K) R - cosh(a -iB)n
7= 8K G2, cosia -ip)
) 2P(M2 sin” 6+ iG;K)—( M *sin*g+ GJK) R (1_ cosh(a+i,./3)/7j
8K G/ cosHa +ip)
(23b)

The expressions (22) will remain unchanged. Thiginne is of considerable interest in MHD generatas,
elaborated in Vogin and Alemany [19].

Case II: Oscillating mixed Convection with a Transkse Magnetic Field

With 8 - 0, the applied magnetic field8, will become orientated along theaxis i.e. at exactly 90 degreasq
radians) to the-y plane of flow. Clearlysin 0 — 0 andcos 0 - 1. Effectively Lorentzian hydromagnetic drag will
be retained in both the primary flow velocity, asgtondary flow velocity, via the, a and S expressions which
will still retain M? terms. Magnetic field\M? however will disappear from the expressi@. The corresponding
solutions for the primary and secondary flow fieldsspectively, will then reduce from expressid?®)@nd (21) to:

(iG2 )R -2P [1_ cos(a-if)y sinr(a—i,b’)nj

u(/],T) = 2iG2, cosk(a—iﬂ) sinlﬁa—i,ﬁ)

2G2, cosha +ip) sinffa +i B) ]Jr RGm

(24a)

[ (-G )R -2P [1_ cosh(a +if)n _ . sinf{a+if)n

| 2P(-iG%)(Gi) R |(, cosh(a-ip) sinf{a -i 8)
v(n.T)= 8K °G2, (1_ cosi‘(a—iﬁ’;]_Gr sinfﬁa—iﬁf}

[2P05)-{68)8 | comeig g skt e o
8K G2, cosha +ip) sinffa +i B) R?

In this case, the expressions (22) will be affeeted reduce to:
M 2[M ? — wtanaT |

P=1-
(a,Z +ﬂ2)2

2

a,ﬂ:% <{2M2—2mtam}2+e;;K>2¢( M2- 20 tand)

G2 = (6K * —4a) tan® ol - 4w?)"? (25)

In the expression (22, is affected, sincer, S are affected. This case provides an excellenttheadk for the vast
majority of studies in oscillatory hydromagnetieghich consider only a transverse magnetic fieldngcon the
flow.
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Case llI: Oscillatory “Magnetic Mirror” buoyant Corvection with Oblique Magnetic Field
With the angular frequency of oscillatiowl - 772, a resonant response arises corresponding to the

condition, w>%cosmT (1&K* - M*Sin'8 }'2. The condition,w>%cosmT (1&* - M*Sin'd }'2 defines an

oscillatoryturbulent dynamo mechanism in a solar hydromagmetjane if the strength of a magnetic field will be
an appropriate level. A charged oscillation caretpkace with reference to a driving force to exhilgisonant
fluorescence in the presence of an ( driving fregye excitation frequencyp>0.

Case IV: Steady State Resonant Free Convectiomait Oblique Magnetic Field

With the angular frequency of oscillatio@] —» 0, oscillation is eliminated in the regime. Thginee is then “steady
state”. The velocity distributions in (20) and (2&3n be expounded in two ways. The excitationueagy may be

either (0<%(16K4 -M“Sin8)"2 or w>%(16K4 - M “*Sin')"2. The former condition corresponds to a low

frequency of oscillation in response to a solarafga mechanism, wherein the Lorentzian (magnetoluyehamic)
and Coriolis (rotational) forces are of the sanweonof magnitude. The latter conditions impliegsonant response
of turbulent characteristics, and the flow regimealéstabilized by a magnetic field. This latterditan therefore
leads to a steady state resonance on the veldaitly f

Shear StressDistributions
The primary and secondary shear stresses at thexr app lower plates can be derived by taking tret fi
gradients of the respective velocities at the lofmer -1) and uppersf = +1) plates.

aul _[(Msin?g+iG )R - 2P [i(a—i/})sinh(a—i/})_Gr(a—i,B) cosr(a—i,B)J

%”ﬂ - 2iG2, cosHa -ip) sinffa i)

) (Mzsinzﬁ-—iGﬁK)Ri—ZP $(a+iﬁ)sinh(q+iﬁ)_Gr(a+iﬁ_’)coslia+iﬁ) +RGI
2iG2 cosh(a +ip) sintfa +i )

(26)

dv
dn

2P(M?sin?6+iG], ) +(M*sin'0+G2 )R |(_(a-ip)sinh(a-iB) _ (a-ip)cos{a-ipB)
= - F - -Gr - :
™ 8iG., cosha -ip) sinffa -i B)

_[2P(Mzsin29+iGjK)—(M4sin“¢9+G,\,‘|‘K)R](i(aﬂﬁ)sinh(aﬂﬁ) Gr(a+iﬁ)cosf(a+iﬁ)J_ P &

8G2, cosh{a +ip) sinffa +i3) R?
(27)
Inspection of Eqns. (26) and (27) reveal that thenary (main flow) and secondary (cross flow) shettess
components vanisheitheron the upper plate or the lower plate. Both siséi@sses are functions of magnetic field
(M?), rotational parameterkf), angular frequencydl) and of course magnetic field orientatio).(Closer
inspection of the shear stress expressions indidhtg in the forced convection casar (-~ 0), flow reversal i.e.
backflow, will not arise. Further analysis howewedicates that the primary shear stress at the rigpiate, i.e.

du

d_ will vanish at a critical value of the Grashof ragn. This criterion is defined as:
n

n=-1

__cosh2a —cos2f3 FGy, —F,
cosh2a +cos2f3 F,G2, +F,

CX
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(28)
where the functionk,, F,, F3, F, andFs are defined respectively as:
F, =M*sin* -8K* + 2M *wcos dtanaT + 2a° (29a)
F, = F.(Bsinh2a —asin2p) (29b)
F, = M ?(cosh2a — cos23 — a'sinh2a — Bsin2p3) (29c)
F, = F.(Bsinh2a + asin2p) (29d)
F, = M *(asinh2a - Bsin2p) (29¢)
Sincecoshr > cos23 for allK? «T andé, the numerator in (28) will always be positive.
The secondary (cross flow) shear stress at therlplage, i.e.% will also vanish at &ritical value of the
N s
Grashof number. This criterion is defined as:
A cosh2a - cos23 2H G2 —H. 0)
¥ cosh2a +cos23 H, +2H G/
where the functionsl;, Hy, Hs, Hy, Hs andHg are defined respectively as:
H, =4K* - M?wcos ftanaT - o’ (31a)
H,=M?[M*sin*8+G;, ]-2H,M?*sin* 8 (31b)
H, = H,(8sinh2a —asin2p) (31c)
H, =H,(cosBa -co2B-asinlRa - SsSin2f) (31d)
H, =H,(asin2 + fsinh2a) (31e)
H¢ = H,(asinh2a — Bsin2p) (31f)

Proceeding as with the lower plate, we find thahatupper plate primary (main) flow reversal is initiated when:
_ cosh2a -cos2f F.G., —F,

Gr, = > (32)
cosh2a +cos2f F,Gy, +F,

Similarly secondary (cross) flow reversal ariseghatupper plate when:
cosh2a - cos2 2H G/, —H

¥ cosh2a +cos23 H, +2H ,G2,
The critical Grashof numbers given by expressid@®) @nd (33) will therefore be numerically equalthose
yielded by expressions (28) and (30), for the prinfbw, since the expressions emerge as beingdhee.

Results and Discussion

Computations are carried out for thertio boundary conditions (18). This vyields thexact
order ordinary coupled partial differential equatio solutions given in eqgns. (20) and (21). The evoluti
defined by equations (16), (17) subject to a forced of dimensionless primary and secondary velocity
oscillation given by the equations (19) based @n th distributions given by the equations (20) and (21)
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with the inclusion of (22) due to primary and
secondary flows have been depicted graphically to
show the influence of the various controlling
parameters vizM?, K2, 0, Gr andwT. A parametric
study has also been undertaken for the response of
the critical Grashof numbers for the primary and
secondary flowsGr,, Gr.,) defined in equations (32)
and (33) respectively, to@ (magnetic field
inclination), M? (Hartmann number squared)®
(inverse Ekman number) andl' (angular frequency

ISSN: 2277-9655

Table 3: Critical Grashof number for primary flow
(Gry) for M?=10,8= 4, w=0.4 with K?and &l

of oscillation). These are depicted in tables 16to

Additionally

numerical

evaluations

of the

dimensionless primary u] and secondary V)

variation.
K2 4.0 6.0 8.0 10.0
aTl Gry Gry Gry Gry
0 3.42504| 2.32074 1.88616 1.67069
/6 4.01867| 2.41911] 1.91810 1.68507
/4 4.68019| 2.50081] 1.94296 1.69599
/3 6.94456| 2.66673 1.9893P 1.71574
5m/12 | 7.74044 | 3.37511 2.14116 1.77532

Table4: Critical Grashof number for secondary flow
(Gre,) for M?=10,8= 74, @=0.4 with K*and &l

velocities have been conducted for both steady stat variation.
(o1 = 0) and transientgT> 0) cases, for the effects
of @ (inclination), M? (Hartmann number squared)’ w 0 /6 T4 3 5n/12
(inverse Ekman number) anGr (Grashof number). T
These are plotted in figures in figures 2 to Default N
values for the control parameters in these graphs a 0 Gl Gl Glo Gr Gr o
taken ask’® = 4; ol = 0 (steady state) ol = 774 I
(transient i.e. oscillatory flow). 0 | 1.2615| 1.2651 | 1.2679 | 1.2729| 1.2881
B 5 9 7 8 6
M- | 2.0 5.0 8.0 10.0 W | 1.2833] 1.2871| 1.2900| 1.2953| 1.3112
a1 Gr Gr Gr« Gr « 6 2 4 5 1 3
O | 1.08222] 1.20181 125510 1.26797 n | 1.3114| 1.3155| 1.3186 | 1.3241 | 1.3410
/6 1.0 1.20510| 1.27004 1.29005 4 7 3 1 8 7
7974 m | 1.3497 | 1.3541| 1.3574| 1.3635| 1.3818
/4 1.07708| 1.20844 1.2881( 3 1 1 6 0 2
1.318607 | 1.4053| 1.4103| 1.4141| 1.4209 | 1.4417
w3 | 1.07423| 1.21182 1.35745 5 6 3 1 6 6
1.310601 Table5: Critical Grashof number for primary flow
w2 | 1.07117| 1.21524 1.33969  1.41411 (Gry) for M?= 10, I = 5 =04 with @T and &
Table1: Critical Grashof number for primary flow variation.
(Gry) for K= 5,4l = 714, @=0.4 with M?>and @
variation. w 0 /6 4 T3 5n/12
T
M 2.0 5.0 8.0 10.0 -
61 Grg Gry Grg Grey 8 | Gr Gr Gr Gr Gr
0 | 215679 2.22039 216832 2.10984 | , i i i i i
e | 217596| 236828 2.43820 2.43383 747177 97035 2.0456 2.1098| 2.2446] 2.90057
/4 2.19565| 2.56707, 2.92311 3.13019 8 4 2
W3 | 2.21585| 2.84882 4.05982 5.77795 7 | 2.22388| 2.3365 2.4338| 2.6426| 3.74946
n/?2 2.23651| 3.27837 9.92299 9.50025 6 4 3 6
Table2: Critical Grashof number for secondary flow | 2.72710| 2.939Q 3.1301| 3.5681| 6.76544
(Grg,) for K*=5,al = 74, @=0.4 with M?and @ 4 4 9 3
variation. n | 4.23919| 4.9827 5.7779| 8.2695| 18.2317
3 1 5 2 2
2
K- | 40 6.0 8.0 10.0 | 16.6214] 16.293| 9.5002| 5.2916| 2.08156
aT | Grcx Grcx Grcx Grcx 2 8 1 6 2
0 1.38988| 1.25088 1.17166 1.12694 Table6: Critical Grashof number for secondary flow
w6 | 1.39747| 1.25291 1.172087 1.12696 (Gr,) for M2= 10, K= 5,0=0.4 with &T and 6
T4 1.40331| 1.25443 1.17234 1.12697 variation.
/3 1.41406| 1.25715 1.17283 1.12698
5m/12 | 1.44809| 1.26500 1.17408 1.12693
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Table 1 shows tha&r, remains positive for
any combination oM? and &. Positive Grashof
number Gre > 0) in free convection flows implies
cooling of the plate by free convection currents i.
transport of thermal energy from the channel plates
to the intercalated fluid. We note that the opposit
case,Gr,, < 0 would correspond to plate heating,
wherein free convection currents transport thermal
energy from the fluid to the platesFamy inclination
of the magnetic fieldd, Gr,, magnitudesre found to
increase steadilyith an increase ivi°.

From Table 2 it is observed that for the
variation of the critical Grashof number for the
secondary flow field, i.e.Gry. In this case we
observe that at any value bF, Gr is continuously
boosted in magnitude with a rise in magnetic field
inclination i.e. secondary critical Grashof number
values progressively increase as the magnetic field
sweeps from the positieaxis (@= 0) through to the
positive x-axis (@ = 772). Magnitudes are also found
to be considerably higher than in the case of the
primary critical Grashof numbeiG{.,), particularly
at highM? value and greater inclinations.

In tables 3 and 4, the evolution of the
primary flow and secondary flow critical Grashof
numbers, i.e. Gr, and Gry, are shown, for
combinations of the rotational parametiéf)(and the
oscillation parameterdT). Both tables correspond to
the obligue magnetic field cagé = 774). Inspection
of Table 3 reveals that with an increaséfrfrom 4,
through
6,8 tol0,at a giverwT, there is a clear decrease in
Gre. IncreasingK? corresponds to a rise in the
rotational velocity of the channel, for fixddandv
2

(k2 =9k

). Coriolis force is therefore boosted as

K? is increased and this serves to reduce critical
primary Grashof number magnitudes. Conversely for
a fixed K% as the parametewl increasesfrom 0
(transverse field case) througit6, 774, 773 to the

http: // www.ijesrt.com

ISSN: 2277-9655

maximum inclination of772, there is a steady rise in
value of Gg. Since w = 0.4, an increase inwl
implies that time (T) is increasingHence with
progression of timethe critical primary Grashof
number is enhanced. Table 4 shows that critical
Grashof number for the secondary flovr()
exhibits a similar response td&? and ol i.e. with
increasing K values, Gy, magnitudes are depressed,
and with increasingal values, magnitudes are
increased However the values oGr,, are much
higher thanGr,, indicating that the secondary flow
response is much stronger.

Tables 5 and 6 show the combined effects of
ol and don G, andGr,. Gre as seen in Tablg,
again increases with an increasewh, for any value
of magnetic field inclination §). However with
greater 6, the magnitudes ofGr., are clearly
enhanced. MaximunGr,, arises therefore for the
maximum studied valuef «rl (= 57712) and the
maximum value o (= 772) , and attains a value of
1.44176. A similar trend is observed for the,Gr
values in Table 6. However Grvalues generally
increase with increasingT for 6 = 0, W6 and1v4;
however a$ is further increased w3 andrv'2, Gr,
values rise aswl increases tor’3 but then fall
considerably fowT = 172.

Figures 2 to 10 show the primary)(and
secondary \) velocity distributions across the
channel for various values of the governing
parametersNi?, K2, 6, Gr) for steady statex(T = 0)
and transientT=x/4) cases, respectively.

Figures 2 and 3 show the effect of the
rotational parameteikf) onu andv distributions. In
the steady state case (figure 2) with increadfdg
primary velocity is generally reduced in magnitude.
values are negative near the lower plate of the
channel § = -1); however for the majority of the
channel space values are positive so that bagk flo
does not arise here. Peak primary velocity ariges n
to the upper plate and with increasing Corioliscéor
(i.e. greateik?), the peaks are displaced further from
the upper plate/{ = 1). Conversely the secondary
flow is found to be positive near the lower platd b
strongly negative everywhere else in the channel
indicating that there is strong secondary flow
reversal. With increasind® values,v values are
increased i.e. become more positive. A similar
response is observed in figure 3 for the transtast
(o = 714).

Figures 4 and 5 depict the primary and
secondary velocity response to various Grashof
numbers. It is observed for the steady state @gbr
and transient (figure 5) cases. With increas(g
values, primary velocity is decelerated in the Iowe
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channel half (-1 <7 < 0) whereas it is strongly
accelerated in the upper channel half (O7< 1).
Conversely secondary velocity is found to be sthpng
accelerated in the lower channel half (-3 < 0) but
decelerated in the upper channel half (§ < 1) with
an increase iGr.

Figure 6 shows the influence of the
oscillatory parameter ¢fT) on the primary and
secondary velocity profiles through the channel.
With increasing oI values, there is a distinct
acceleration in the primary flow. Conversely the
secondary flow is initially decelerated with
increasingal values from the lower channel towards
the channel mid-point, thereafter the secondary
velocity is slightly accelerated with increasiaf i.e.
values become less negative. Generally the secpndar
velocities are negative i.e. strong secondary back
flow occurs throughout the channel for ail.

The effects of magnetic field inclinatiaf),
on primary () and secondaryw] velocity profiles in
the channel are shown in figures 7 and 8, for the
steady state and transient cases. It is obsehagcht
rise in inclination accelerates the primary flown¢e
hydromagnetic drag is reduced) and increase
backflow in the secondary flow.

Finally in figures 9 and 10, we
observe that for both steady state and transiesgsca
with an increase in the hydromagnetic parameter
(M), primary velocity magnitudes are decreased in
magnitude in the proximity of the lower plate (wher
back flow arises) but increased in the remainder of
the channel where as secondary flow velocity
magnitudes are strongly decreased throughout the
channel.

Conclusions

Analytical solutions have been obtained for
the transient magneto-hydrodynamic free convection
flow in a rotating parallel plate channel in the
presence of an inclined magnetic field. Critical
Grashod numbers have been derived for the primary
(main) flow and the secondary (cross) flow.

e Foranyinclination of the magnetic fie]d,
Gr and G, magnitudesare found to
increase steadily with an increase in
magnetic field parameteMf).

* Gry and Gy, are increased with a rise in
magnetic field inclination).

» Gr,, magnitudes are found to be
substantially greater tha@r.,, magnitudes,
in particular at highM? value and greater
inclination @).

e With an increase in rotational parameter
(K?), Grey andGr,, are generally decreased.
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With increasing oscillatory parameter values
(al) Gry, and Gr,, magnitudes are
increased

With increasing rotational parametek?)
primary velocity () is decreased
whereassecondary velocity) (s enhanced.
With increasing free convection parameter
i.e. Grashof numbelQr) primary velocity is
decelerated in the lower channel half (- <

< 0) whereas it is strongly accelerated in
theupper channel half (0 % < 1); the
converse response is computed for the
secondary flow.

With increasing ol values (and therefore
with progression of time) there is a
strongacceleration in the primary flow,
whereas there secondary flow is generally
retarded i.e.greater backflow.

With a rise in magnetic field inclinatiorgy
the primary flow is accelerated (since
hydromagnetic drag is reduced) whereas the
backflow is  generally  decelerated
i.e.increasing secondary back flow.
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